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Abstract: A mathematical approach is taken to investigate Love wave propagation in non-homogeneous electro-

magneto-elastic media. The elastic media is assumed to be initially unstressed and at rest. In this study, it is assumed that 

mass density ' 'ρ , elastic coefficients
' '

ij
c

, dielectric coefficients 
' 'ijε

 magnetic permeability coefficients
' 'ijµ

, piezoelectric 

coefficients 
' 'ije

 piezomagnetic coefficients
' '

ij
f

and magneto-electric coefficients ' 'ijg  of the specimen are space dependent. 

The analytical solution for dispersion of love waves is obtained for electromagnetically short and open case. It has been 

shown that non-homogeneity factor reduces the penetration depth of Love waves. The numerically results are shown graph-

ically. 
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1. Introduction 

The electro- magneto-elastic solid material is a class of 

materials which exhibit the coupling between mechanical, 

electric and magnetic fields. Composite materials which 

are made of piezoelectric and piezomagnetic phases show a 

magneto-electric effect which is not present in individual 

constituents. These materials show a significant coupling 

of elastic, magnetic, electric fields due to coupled nature of 

constitutive equations. 

The elastic cylindrical shell under radial impulse was 

studied by Mcivor [1]. Cinelli [2] has investigated dynamic 

vibrations and stresses in elastic cylinders and spheres. Pan 

and Heyliger [3] have given the exact solutions for magne-

to-electro-elastic Laminates in cylindrical bending. The 

wave propagation in non-homogeneous magneto-electro-

elastic plates has been solved by Bin et al. [4]. Kong et al. 

[5] solved the problem of thermo-magneto-dynamic 

stresses and perturbation of magnetic field vector in non-

homogeneous hollow cylinder. 

A layered structure consisting of an isotropic layer on an 

isotropic substrate and perfect bonding at their interface 

was first studied by Love [6]. A Love waves in layered 

systems consisting of two cubic piezoelectric crystals was 

studied by Zakharenko [7]. Bracke [8] developed a broad-

band magneto-electric transducer using a composite ma-

terial. Qian et al. [9] have studied Love waves propagation 

in a piezoelectric layered structure with initial stresses. 

Later Wang and Quek [10] presented Love waves in pie-

zoelectric coupled solid media. Ramirez et al. [11] studied 

the free vibration response of two-dimensional magneto-

electro-elastic laminated plates. Aboudi [12] analyzed the 

micromechanical analysis of fully coupled electro-

magneto-thermo-elastic multiphase composites. Effect of 

magnetic bias field on magneto-electric coupling in magne-

to-electric composites was discussed by Liu [13]. Zaitsev 

et al. [14] investigated the acoustic waves in piezoelectric 

viscous and conductive plates. Propagation of Love waves 

in prestressed piezoelectric layered structures loaded with 

viscous liquid was studied by Du et al. [15]. Pan [16] pre-

sented the exact solution for simply supported and multi-

layered magneto-electro-elastic plates. The behavior of 

Love waves in a piezoelectric structure was discussed by 

Liu [17]. Recently, Kakar [18, 19] has studied the propaga-

tion of Love waves in a non-homogeneous elastic media 

and propagation of Love waves in a non-homogeneous 

orthotropic layer under compression ‘P’ overlying semi-

infinite non-homogeneous medium. 

In this study, we consider the wave propagation in non-

homogeneous media, when mass density ' 'ρ , elastic coeffi-

cients ' 'ijc , dielectric coefficients ' 'ijε  magnetic permeabili-

ty coefficients ' 'ijµ , piezoelectric coefficients ' 'ije  piezo-
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magnetic coefficients ' 'i jf and magneto-electric coeffi-

cients ' 'i jg  of the specimen space dependent such that the 

wave velocity is also space dependent and obey the laws 
0 2 ,xe αρ ρ=  

0 2 ,x

ij ijc c e α=  
0 2 ,x

ij ij
e αε ε= 0 2 ,x

ij ij
e αµ µ= 0 2 ,x

ij ije e e α=
0 2 x

ij ijf f e α= and
0 2

.
x

ij i jg g e
α=  The specimen is polarized in 

the z-axis direction. The electric and magnetic potential are 

calculated and discussed in detail. The paper ends with 

numerical analysis by taking material parameters. The out-

come of these results can be utilized in the design of SAW 

devices with high performances. 

2. Basic Equations and Formulation of 

the Problem 

Consider the inhomogeneous transversely isotropic 

magneto-electro-elastic half space as shown in figure 1. 

The piezoelectricity and piezomagneticity are polarized in 

the z-axis direction. It is assumed, the antiplane displace-

ment components (u, v, w) are given by 

 

Fig. 1. Geometry of the problem. 
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The electric and magnetic potential (φ andψ) are given 

by 

( , , ), ( , , ),x y t x y tφ φ ψ ψ= =       (2) 

The equilibrium equations of elasticity without body 

forces are given by [20] 

, ,ij j iuσ ρ= ɺɺ                            (3) 

The Gauss’s laws of electromagnetism without free 

charges are given by 

, ,0, 0,= =i i i iD B                    (4) 

where ijσ , i
D and i

B are the stress, electric displacement 

and magnetic induction respectively. 

The coupled constitutive equations for an anisotropic 

and linearly magneto-electro-elastic solid can be written as 

,

,

,

i ik k ki k ki k

i ik k ki k ki k

i ik k ki k ki k

c e E f H

D e E g H

B f g E H

σ γ
γ ε
γ µ

= − −
= + +
= + +

    (5) 

where ' 'ijc , ' '
ij

ε  and ' 'ijµ  are elastic coefficients, dielec-

tric coefficients and magnetic permeability coefficients 

respectively ; ' 'ije , ' 'ijf  and ' 'ijg  are piezoelectric coeffi-

cients, piezomagnetic coefficients and magneto-electric 

coefficients respectively and they are represented by vari-

ous matrices (for electro-magneto-elastic medium with 

polling direction) as [21] 
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The stress strain relation is 

, ,

, , ,

, , , ,

, ,

, ,

, ,

= =

= = +

= + = +

x x y y

z z yz z y

zx z x xy x y

u v

w v w

u w v u

ε ε
ε γ
γ γ

        (7) 

The components of electric and magnetic field are given 

by 

, , ,

, , ,

, , ,

, , ,

= − = − = −

= − = − = −
x x y y z z

x x y y z z

E E E

H H H

φ φ ψ
ψ ψ ψ           (8) 

where φ and ψ are electric and magnetic potentials. 

From Eqs (1)-(5), the coupling wave equations and con-

stitutive equations can be obtained as 
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where the nonzero stress, electric displacement and 

magnetic induction components are 

4 4 1 5 1 5
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xz
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Let us assume the following non-homogeneities 
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From Eq. (9) and Eq. (10), we get 
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where∇
2 
= 

2 2

2 2x z

∂ ∂
∂ ∂

+ . 

Let us assume the upper layer is air then the electric and 

magnetic potential functions in air are 

0 0( , , ), ( , , ),x y t x y tφ φ ψ ψ= =                (13) 

Eq. (13) satisfies the Laplace equation  

2 2

0 00, 0.∇ = ∇ =φ ψ                                (14) 

Similarly, the electric displacement and magnetic induc-

tion components in the air are 

0 00 0
0 0

, .
∂ ∂= − = −
∂ ∂x x

D B
x x

φ ψε µ                     (15) 

For air, 0µ = 74 10π −× and 0ε = 128.85 10−× (in SI units) 

known as permeability and permittivity. 

3. Boundary Conditions 

1. For ( 0)x =  

(0 , ) 0
xz

yσ =                            (16) 

2. The electric and magnetic potential for electromagnet-

ically open case is (traction free surface ( 0)x = ), 

0

0(0 , ) (0 , ), (0 , ) (0 , )= =x xy y D y D yφ φ       (17) 

0

0( 0 , ) ( 0 , ) , ( 0 , ) ( 0 , )= =x xy y B y B yψ ψ      (18) 

3. For electromagnetically shorted case ( 0)x =  

(0 , ) (0, ) 0y yφ ψ= =            (19) 

4. The attenuation conditions are 

For 

x → +∞ , ( , ), ( , ), ( , ) 0w x y x y x yφ ψ →   (20) 

For 

x → −∞ , 0 0( , ), ( , ) 0x y x yφ ψ →    (21) 

4. Solution of the Problem 

4.1. For Electromagnetically Shorted Case 

We may assume the solution of Eq. (12) as 

( )

( ) ( )

( ) ( )
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        (22) 

where 

2
2

2
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1
c
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c
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, 
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c

ξ ζ
ρ ρ

+ += =   

0 0 0 0

15 11 15 11

0 0 0

11 11 11

e f g

g

µξ
ε µ

−=
−
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g
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A, B and C are arbitrary constants, c is phase velocity of 
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Love waves, k is wave number ( 2 / )k π λ= . 

From Eq. (10) and Eq. (22), we get 
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Put Eq. (22) and Eq. (23) into the Eq. (16) and Eq. (19), 

we get 
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Eliminating A, B and C from Eq. (24), we get the solu-

tion for the electromagnetically shorted case 
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where 
0 0

15 15
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44 15 1 5

e f
k

c e f
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+=
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 known as electro-

magneto-elastic coupling coefficient. 

Discussion 

It is quite clear that from Eq. (25) Love waves in magne-

to-electro-elastic half space are dispersive and depend on 

the non-homogeneity parameters of the media also phase 

velocity of these waves is related to wave number. 

In the absence of non-homogeneity, i.e 0α = , Eq. (25) 

reduces to  

2
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Hence, Eq. (25) gives is the wave velocity for piezoelec-

tric non-homogeneous half-space electrically shorted case 

i.e. 

2

0'
m

k
n

=                                           (27) 

If 0α = , the phase velocity for piezoelectric homogene-

ous half-space is given by 
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Hence, Eq. (25) gives is the wave velocity for piezo-

magnetic non-homogeneous half-space electrically shorted 

case i.e. 

2
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m

k
n

=                                           (29) 

If 0α = , the phase velocity for piezomagnetic homoge-

neous half-space is given by 
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4.2. For Electromagnetically Open Case 

We may assume the solution of Eq. (14) satisfying the 

boundary condition Eq. (20) and Eq. (21) are 
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The solution of Eq. (15) satisfying the boundary condi-
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tion Eq. (20) and Eq. (21) are 
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Put Eq. (22) and Eq. (23) into the Eq. (17) and Eq. (18), 

we get 

0 0 0

4 4 1 5 1 5

0 0

1 5 1 5

( )

0 ,

,

+ +

+ + =
+ =
+ =

m c e f A

n e B n f C

B A G

C A H

ξ ζ

ξ
ζ

          (33) 

0 0

1 1 1 1 0

0 0

1 1 1 1 0

n B g n C k G

g n B n C k H

ε ε
µ µ

+ =

+ =
 

Eliminating A, B, C, G and H from Eq. (33), we get the 

solution for the electromagnetically open case 
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5. Discussion 

It is quite clear that from Eq. (34) Love waves in magne-

to-electro-elastic half space are dispersive and depend on 

the non-homogeneity parameters of the media also phase 

velocity of these waves is related to wave number. 

In the absence of non-homogeneity, i.e 0α = , Eq. (25) 

reduces to 
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ous half-space is given by 

4

0

2
0

2
1 1

0

'
1

'
1

kc

c ε
ε

= −
 

+ 
 

         (37) 

where, 
0 2 0
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If 
0

15e = 0 and 
0

11g =0, then 
0 0 0 0

1 5 1 1 1 5 1 1

0 0 0

1 1 1 1 1 1

e f g

g

µξ
ε µ

−=
−  and 

0 0 0 0

15 11 15 11

0 0 0

11 11 11

f e g

g

εζ
ε µ
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−

reduce to 0ξ =  and 
0

1 5

0

1 1

fζ
µ

= respectively. 

Therefore,  

0 20
1 1 0 0'' 0

kn
n k k

m

µµ µ− + =         (38) 

If 0α = , the phase velocity for piezomagnetic homoge-

neous half-space is given by 

4
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2
0

2
1 1

0

''
1

''
1

kc

c µ
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= −
 
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 

         (39) 

where, 
0 2 0

15 11
0 0 0 2 0

44 15 11

/
''

/
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c f

µ
µ

=
+

. 

6. Numerical Analysis 

To study the propagation behavior of Love waves in 

non-homogeneous electro-magneto-half- space, the follow-

ing parameters are taken as shown in table-1. Using these 

parameters we can get the velocity of love waves in the 

homogeneous electro-magneto-elastic half-space for electr-

ically shorted case from Eq. (28) and it is 2725.698 m/s. 

The velocity of love waves in the homogeneous electro-

magneto-elastic half-space for electrically open case is 

obtained from Eq. (37) and it comes out to be 2853.398 

m/s. 

The variation of non-dimensionless phase velocity v/s 

non-dimensional wave number is also plotted in figure-2 

and in figure-3 with the help of MATLAB. It is important 

to note that in case of electromagnetically shorted case the 

non-dimensionally phase velocity started from 0.68 where 

as for electromagnetically open case the non-dimensionally 

phase velocity started from 0.88 for Love waves. Also, the 

effect of gradient coefficient on dispersion curve is more 

sensitive for short condition than open condition. 

Table 1. 

0

44c  
0

15e  
0

15f  
0

11g
 

0

11µ
 

0

11ε
 0ρ  

43 
GPa 

11.6 
C/m

2 
550 
N/Am 

5x10
-

12
Ns/Vc 

5x10
-

5
Ns

2
/C

2 
11.2x10

-

9
F/m 

7500 
Kg/m

3 
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Fig. 2. 

 

Fig. 3. 

7. Conclusion 

In this study, we have taken into account the effect of 

non-homogeneity on the propagation of behavior of Love 

waves in a transversely isotropic electro-magneto-elastic 

half space. One numerical example is taken to explain the 

dispersion of Love waves. The following points have been 

noticed: 

The Love waves are dispersive in nature for both elec-

tromagnetically open and short cases. These waves are 

different in non-homogeneous substrate as compared to 

homogeneous substrate. 

The phase velocity is more in electrically open case as 

compared to shorted case. 

The electro-magneto-elastic coupling factor of Love 

waves can be improved by adapting the appropriate value 

of the graded coefficient. 

The dependence of phase velocity on the inhomogeneity 

in space for electro-magneto-elastic substrate for Love 

waves opens a new window for designing acoustic wave 

electro-magneto-elastic devices. 
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