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Abstract: A mathematical approach is taken to investigate Love wave propagation in non-homogeneous electro-
magneto-elastic media. The elastic media is assumed to be initially unstressed and at rest. In this study,, it is assumed that

C..

mass density #', elastic coefficients 7 , dielectric coefficients

7 magnetic permeability coefficients 7% , piezoelectric

coefficients ¥ piezomagnetic coefficients /7 and magneto-electric coefficients & of the specimen are space dependent.
The analytical solution for dispersion of love waves is obtained for electromagnetically short and open case. It has been
shown that non-homogeneity factor reduces the penetration depth of Love waves. The numerically results are shown graph-

ically.
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1. Introduction

The electro- magneto-elastic solid material is a class of
materials which exhibit the coupling between mechanical,
electric and magnetic fields. Composite materials which
are made of piezoelectric and piezomagnetic phases show a
magneto-electric effect which is not present in individual
constituents. These materials show a significant coupling
of elastic, magnetic, electric fields due to coupled nature of
constitutive equations.

The elastic cylindrical shell under radial impulse was
studied by Mcivor [1]. Cinelli [2] has investigated dynamic
vibrations and stresses in elastic cylinders and spheres. Pan
and Heyliger [3] have given the exact solutions for magne-
to-electro-elastic Laminates in cylindrical bending. The
wave propagation in non-homogeneous magneto-electro-
elastic plates has been solved by Bin et al. [4]. Kong et al.
[5] solved the problem of thermo-magneto-dynamic
stresses and perturbation of magnetic field vector in non-
homogeneous hollow cylinder.

A layered structure consisting of an isotropic layer on an
isotropic substrate and perfect bonding at their interface
was first studied by Love [6]. A Love waves in layered
systems consisting of two cubic piezoelectric crystals was
studied by Zakharenko [7]. Bracke [8] developed a broad-
band magneto-electric transducer using a composite ma-

terial. Qian et al. [9] have studied Love waves propagation
in a piezoelectric layered structure with initial stresses.
Later Wang and Quek [10] presented Love waves in pie-
zoelectric coupled solid media. Ramirez et al. [11] studied
the free vibration response of two-dimensional magneto-
electro-elastic laminated plates. Aboudi [12] analyzed the
micromechanical analysis of fully coupled electro-
magneto-thermo-elastic multiphase composites. Effect of
magnetic bias field on magneto-electric coupling in magne-
to-electric composites was discussed by Liu [13]. Zaitsev
et al. [14] investigated the acoustic waves in piezoelectric
viscous and conductive plates. Propagation of Love waves
in prestressed piezoelectric layered structures loaded with
viscous liquid was studied by Du et al. [15]. Pan [16] pre-
sented the exact solution for simply supported and multi-
layered magneto-electro-elastic plates. The behavior of
Love waves in a piezoelectric structure was discussed by
Liu [17]. Recently, Kakar [18, 19] has studied the propaga-
tion of Love waves in a non-homogencous elastic media
and propagation of Love waves in a non-homogeneous
orthotropic layer under compression ‘P’ overlying semi-
infinite non-homogeneous medium.
In this study, we consider the wave propagation in non-

homogeneous media, when mass density'0’, elastic coeffi-

cients'c;', dielectric coefficients '5,~j ' magnetic permeabili-

ty coefficients ',U,-j ', piezoelectric coefficients 'e; ' piezo-
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magnetic coefficients' f;; ' and magneto-electric coeffi-

cients '€, ' of the specimen space dependent such that the

wave velocity is also space dependent and obey the laws

— A0 2ax — 0 2ax — &0 2ax — 0 _2ax — 0 2ax
p=pe, Cy'_cy'ez » &y TECT L Hy = Het s g =g,

— 0 2ax - 0 2ax
Jy=fj¢ andg, = g e

. The specimen is polarized in
the z-axis direction. The electric and magnetic potential are
calculated and discussed in detail. The paper ends with
numerical analysis by taking material parameters. The out-
come of these results can be utilized in the design of SAW
devices with high performances.

2. Basic Equations and Formulation of
the Problem

Consider the inhomogeneous transversely isotropic
magneto-electro-elastic half space as shown in figure 1.
The piezoelectricity and piezomagneticity are polarized in
the z-axis direction. It is assumed, the antiplane displace-
ment components (&, v, w) are given by

Fig. 1. Geometry of the problem.

u(x,y) =0,
v(x,y) =0, (1)
w=w(x, y,1),

The electric and magnetic potential (¢ andy) are given
by

P=@x,y,0), Y=¢(x, .0, (2)

The equilibrium equations of elasticity without body
forces are given by [20]

0. = Pi;, 3)

The Gauss’s laws of electromagnetism without free
charges are given by

D, =0,B,=0, @)

where 0, , D,and B;are the stress, electric displacement
and magnetic induction respectively.

The coupled constitutive equations for an anisotropic
and linearly magneto-electro-elastic solid can be written as

o, =c,V, —e,E, ~ fu,H,,
D, =e,y, +&,E, +g,H,, (5
B, = fuVe ¥ guk, + U,H,,

where 'c;', '€;" and 'H; "' are elastic coefficients, dielec-
tric coefficients and magnetic permeability coefficients

respectively ; 'e;", ' f;' and 'g," are piezoelectric coeffi-
cients, piezomagnetic coefficients and magneto-electric
coefficients respectively and they are represented by vari-

ous matrices (for electro-magneto-elastic medium with
polling direction) as [21]

£ 0 0
[e]=] 0 &, 0 1,
0 0 £y,
81 0
[g]l=] 0 g1 0 |,
0 0 833
Hy o 0 0
[ul=| 0 u,, 0 1,
0 0 Hss
_Cll Ciy  Ci3 0 0 0
0 ¢, ¢ O 0 0
0 0 ¢; 0 0 0
[c]= ) ,
0 0 0 ¢, O O
0 0 0 0 Cys 0
| 0 0 0 0 Ces
[0 0 e
0 0 e,
_| 0 0 €33
[e]= 0 e, o 6)
es 0 0
Lo 0 0
0 (U
0 0 1,
. 0 0o f
[f1= . 2,
0 fiu O
fis 0 0
0 0 0
The stress strain relation is
gx = u.x’ SV" = V.y’
‘gz = W,z’ yyz = V.z + w,,v > (7)

yzx :u,z +W,x’ yxy :v.x +M,y,

The components of electric and magnetic field are given
by
EX = _¢X,Ev = _q)v’Ez = _l/j zo
o b g : @)
H . =-¢y H, =-¢ , H =-¢y_,

where @and  are electric and magnetic potentials.
From Egs (1)-(5), the coupling wave equations and con-
stitutive equations can be obtained as
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where the nonzero stress, electric displacement and
magnetic induction components are

o.. _044()5) eb(x)—+/”(r)—
¢
D, :els(x) ox _gll(x) ox _gu(x)?, (10)
_ ow _ 9 _ oY
B, = fis(x)=—— ox gn(x) == ox Hyy (x) P

Let us assume the following non-homogeneities

0 2ax — 0 2ax
P =pe™ cu(x)=cye
E = gerHx (11)
0 2ax 0 2ax
Hiy = Hpe e =ese T,

Sis = fl(s) 2m’gll glol e
From Eq. (9) and Eq. (10), we get

e (02w + 20 a—w) +el (0%p+2a g—f)

0 0’
5O v 2a Sy = pr O
el (0w +2a 20— 0 (09 - 20 22
; Ox Ox

(12)

> d
_glul(D-w - 2a i) =0,
0x

£+ 2a Dy - g0 (0% - 20 22)
0x Ox
—ui0y 20 2 =0,
0x
2 g? dz
where[] = .
dxz d e

Let us assume the upper layer is air then the electric and
magnetic potential functions in air are

=@x,p,0), Yo =¢(x,p,0), (13)
Eq. (13) satisfies the Laplace equation
0°g =0,0%, =0. (14)

Similarly, the electric displacement and magnetic induc-
tion components in the air are

5} 5}
D,?:_anifan:_:uo%' (15)

For air, 4, =47rx107 and &= 8.85x107'%(in SI units)

known as permeability and permittivity.

3. Boundary Conditions
1. For (x=0)
0,.(0,y)=0 (16)

2. The electric and magnetic potential for electromagnet-
ically open case is (traction free surface (x =0)),

9(0,7) = ¢,(0,»),D,(0,y) =D (0,y)  (17)
Y(0,y)=¢,(0,y),B,(0,y)=B7(0,y) (18)

3. For electromagnetically shorted case (x =0)

@0,y)=¢(0,y)=0 (19)
4. The attenuation conditions are
For
X — oo w(x, y), @Ax, ) @(x,y) - 0 (20)
For

X - 00, %(xsy)awo(x7y) -0 (21)

4. Solution of the Problem

4.1. For Electromagnetically Shorted Case

We may assume the solution of Eq. (12) as

w = Aemx+ik(y—cl)

¢’: Benx+ik(y—ct) + EAemx+ik(y—('r) (22)
w = Cenxﬂ'k(y—ct) + ZAemxH'k(y—ct)

where
m :—a—\/crz—k[c2 —IJ,
¢
n=-a-vJa’+k’,
,FO \/c +Ee° +7 £
44 44 15 15
0 ,,0 00
&= sty ~ fi5&1
0,0 _ 0
EnkMn ~ &n
and
7= .fli 11 engll
11/111 gll

A, B and C are arbitrary constants, c is phase velocity of
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Love waves, k is wave number (k =277/ 1)
From Eq. (10) and Eq. (22), we get
m (024 + 4(6105
. +Zf‘l(;)Aemx+ik(y—cl)
sz =e c+ik (v— 2
+nel()SBen.x ik (y—ct)

0 x+ik(y-
+n](15Cen\f+l (y—ct)

{_né,lOlBenxﬂ'k(yct) } (23)
D - eZax ,

_ 0 nx+ik(y—-ct)
ng, Ce

0 nx+ik(y-ct)
-ng, Be
_ 2ax 11
Bx - {_ OC nx+fk(y—cr)}'
ny,Ce

Put Eq. (22) and Eq. (23) into the Eq. (16) and Eq. (19),
we get

m(cy, +&els +4 f5)4
+ne;B +nf,2C =0,
B+&A=0,
C+{A=0

24

Eliminating A, B and C from Eq. (24), we get the solu-
tion for the electromagnetically shorted case

2
a + az—k[cz—lj
€

a+~Ja’+k?
- fels + 4 fis
034 + ‘:relos + Zf](S)

=k, (25)

m
n

0 0
where k, = \/ . e :ZflS .
C44 + <relS + Z-f‘lS

magneto-elastic coupling coefficient.

Discussion

It is quite clear that from Eq. (25) Love waves in magne-
to-electro-elastic half space are dispersive and depend on
the non-homogeneity parameters of the media also phase
velocity of these waves is related to wave number.

In the absence of non-homogeneity, i.e a =0, Eq. (25)
reduces to

known as electro-

o T [ Eehrast Y
Vimh Jl(ci+&%+iﬁ2} (26)

G

0,0 _ £0_0
If flf;:Oand g101 =0, then & = esH ~ fi581, and

0,0 0
ENH ~ &0
60 - el gl 0!
¢ = B2l reduce toé = =~ and { = 0 respec-
ENHY T 8n En

tively. Therefore,

0 0 0 0 02 0
—_ C44+Eeli+z~f15 [— C44+elj /Ell
¢ =, |H—"L =5 = |2
P P

and

0 0 02 ;o0

ko= Ses +{ fis ko= es /&)
0o~ 0 0o 4 0o 0~ 0 402 g0
ey tées+{ fis Cag T 5" 1€}

Hence, Eq. (25) gives is the wave velocity for piezoelec-
tric non-homogeneous half-space electrically shorted case
i.e.

L% @7)

n

If a =0, the phase velocity for piezoelectric homogene-
ous half-space is given by

c el /g ’
= = 1-k%=1-] =5 28
') ‘ \/ [‘724 "'61052 /EIOIJ 28)

02 0

. es /&,

where, k', = R

Cyg T €5 1

0 ,,0 0,0
0 0 0

ENML ~ &
fOEU _eOgU _ fo

¢ =i B2l reduce tod = 0 and ¢ = <2~ respec-

ENH T &n a

tively. Therefore,

If elo5 =0and gfl =0, then ¢ = and

0 0 0 0 02,0

o = Cy tées +{ fis Lot = T Sis”

1 1
P P
and
0 0 02,0
= | feastdhs e o | S LA
k - k"=

074l 0 0 0 0 0 02 0
Cay e +{ fis Cauy t S5 1M

Hence, Eq. (25) gives is the wave velocity for piezo-
magnetic non-homogeneous half-space electrically shorted
case i.e.

Z=gn (29)

n

If a =0, the phase velocity for piezomagnetic homoge-
neous half-space is given by

i=¢:z§=%_[
(&

1

02 0
02
where, k", = ,/0117“#/”0
Cas * SisT 1 My

4.2. For Electromagnetically Open Case

[
634 + flgz //Jlol

jz (30)

We may assume the solution of Eq. (14) satisfying the
boundary condition Eq. (20) and Eq. (21) are

¢ - Gek(x+i(y—cr))
0

_ k(x+i(y-ct))
Y,=He

(€2))

The solution of Eq. (15) satisfying the boundary condi-
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tion Eq. (20) and Eq. (21) are

0 — _ k(x+i(y=ct))
D . =-¢kGe

BO = —,U kHek(xﬂ'(y—cz)) (32)
X 0

Put Eq. (22) and Eq. (23) into the Eq. (17) and Eq. (18),
we get

m(ci, +&els +{ fi5)4
+ne’ B + nfiC =0,
B+¢&A=0G,
C+{A=H

(33)

e'nB + g'\nC = €,kG
ghnB + p'\nC = p,kH

Eliminating A, B, C, G and H from Eq. (33), we get the
solution for the electromagnetically open case

ehn - &,k + M= fok
fegknels JH knfs
mciy +&els + ¢ fiD) mcy +&es + 4 f19)
0 (34)
g
2 -
n + Ju ke =0

m(cy, +&els + ¢ f9)

5. Discussion

It is quite clear that from Eq. (34) Love waves in magne-
to-electro-elastic half space are dispersive and depend on
the non-homogeneity parameters of the media also phase
velocity of these waves is related to wave number.

In the absence of non-homogeneity, i.e @ =0, Eq. (25)
reduces to

—=1-1;
e 0 (35)
where
{506105(/1101 + Hy)
+{U, f5(&)) + &y)
r = +8101(Z€105/1101 * E‘Eoflg)

(024 +el’ /e )((8101 +EN(H, + 1)~ glol)

0 O eO 0 _ 0 0
If f;=0and g =0, then ¢ = W_f‘;%” and
11 1 1
. 0
_ f()E() _e()gl) _ e
¢ = s —Usllreduee to§ = 2
ELHY & &

tively. Therefore,

and { = Orespec-

£'n - gk + E(;nﬂk 2= (36)

If a =0, the phase velocity for piezoelectric homogene-
ous half-space is given by

, 02/ o0

- es /&

Whereako_ 0 402/ g0
Cyy T e L&

0,0 0,0
£= eisHyy ~ fis8n

0 _ 0 _
If e;=0and g, =0, then £ T = gt and
0.0 0 0
E,—e 0 .
= wreduce to€=0 and ¢ = L+ respectively.
EnHy — 8n Hi
Therefore,

k
:uloln — Hok + ot k “g =0 (38)

m
If a =0, the phase velocity for piezomagnetic homoge-
neous half-space is given by

02, 0
where, k", =, [ Jis Oz'u“ o
eyt fis L1y,

6. Numerical Analysis

To study the propagation behavior of Love waves in
non-homogeneous electro-magneto-half- space, the follow-
ing parameters are taken as shown in table-1. Using these
parameters we can get the velocity of love waves in the
homogeneous electro-magneto-elastic half-space for electr-
ically shorted case from Eq. (28) and it is 2725.698 m/s.
The velocity of love waves in the homogeneous electro-
magneto-elastic half-space for electrically open case is
obtained from Eq. (37) and it comes out to be 2853.398
m/s.

The variation of non-dimensionless phase velocity v/s
non-dimensional wave number is also plotted in figure-2
and in figure-3 with the help of MATLAB. It is important
to note that in case of electromagnetically shorted case the
non-dimensionally phase velocity started from 0.68 where
as for electromagnetically open case the non-dimensionally
phase velocity started from 0.88 for Love waves. Also, the
effect of gradient coefficient on dispersion curve is more
sensitive for short condition than open condition.

Table 1.
& A& R gh H &) x
43  11.6. 550  5x10°  5x10°  11.2x10° 7500
GPa C/m*> N/Am "“Ns/Ve °Ns¥C’ °F/m Kg/m’
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Phase velocity dmensionless

1 1.5 2

1
2.5 3 3.5 4 4.5 5

Wavenumber dimensionless

(Electromagnetically Shorted Case)

Fig. 2.

Phese velodity dmersioriess

1 1.5 2

2.5 3 3.5 4 4.5 5

Wavenumber dimensionless

(Electrmagnetically Open Case)

Fig. 3.

7. Conclusion

In this study, we have taken into account the effect of
non-homogeneity on the propagation of behavior of Love
waves in a transversely isotropic electro-magneto-elastic
half space. One numerical example is taken to explain the
dispersion of Love waves. The following points have been
noticed:

The Love waves are dispersive in nature for both elec-
tromagnetically open and short cases. These waves are
different in non-homogeneous substrate as compared to
homogeneous substrate.

The phase velocity is more in electrically open case as
compared to shorted case.

The electro-magneto-elastic coupling factor of Love

waves can be improved by adapting the appropriate value
of the graded coefficient.

The dependence of phase velocity on the inhomogeneity
in space for electro-magneto-elastic substrate for Love
waves opens a new window for designing acoustic wave
electro-magneto-elastic devices.
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